Packing, Partitioning, and Covering Symresacks
نویسنده
چکیده
In this paper, we consider symmetric binary programs that contain set packing, partitioning, or covering (ppc) inequalities. To handle symmetries as well as ppc-constraints simultaneously, we introduce constrained symresacks which are the convex hull of all binary points that are lexicographically not smaller than their image w.r.t. a coordinate permutation and which fulfill some ppc-constraints. We show that linear optimization problems over constrained symresacks can be solved in polynomial time. Furthermore, we derive complete linear descriptions of constrained symresacks for important classes of symmetries. These inequalities can then be used as strong cutting planes in a branch-andbound procedure. Numerical experiments show that we can benefit from incorporating ppc-constraints into symmetry handling inequalities.
منابع مشابه
Set Covering, Packing and Partitioning Problems
where A is a mxn matrix of zeroes and ones, e = (1,...,1) is a vector of m ones and c is a vector of n (arbitrary) rational components. This pure 0-1 linear programming problem is called the set covering problem. When the inequalities are replaced by equations the problem is called the set partitioning problem, and when all of the ≥ constraints are replaced by ≤ constraints, the problem is call...
متن کاملRelations among Some Combinatorial Programs
This paper investigates relations among combinatorial optimization problems. To establish such relations we introduce a transformation technique |aggregation| that allows to relax an integer program by means of another integer program. We prove that various families of prominent inequalities for the acyclic subdigraph problem, the multiple knapsack problem, the max cut, graph, and the clique pa...
متن کاملRelations Among Some Combinatorial ProgramsRalf
This paper investigates relations among combinatorial optimization problems. To establish such relations we introduce a transformation technique |aggregation| that allows to relax an integer program by means of another integer program. We prove that various families of prominent inequalities for the acyclic subdigraph problem, the multiple knapsack problem, the max cut, graph, and the clique pa...
متن کاملSome Results on facets for linear inequality in 0-1 variables
The facet of Knapsack ploytope, i.e. convex hull of 0-1 points satisfying a given linear inequality has been presented in this current paper. Such type of facets plays an important role in set covering set partitioning, matroidal-intersection vertex- packing, generalized assignment and other combinatorial problems. Strong covers for facets of Knapsack ploytope has been developed in the first pa...
متن کاملOn the tractability of some natural packing, covering and partitioning problems
In this paper we fix 7 types of undirected graphs: paths, paths with prescribed endvertices, circuits, forests, spanning trees, (not necessarily spanning) trees and cuts. Given an undirected graph G = (V, E) and two “object types” A and B chosen from the alternatives above, we consider the following questions. Packing problem: can we find an object of type A and one of type B in the edge set E ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017